Package: SGL (via r-universe)

August 22, 2024

Title Fit a GLM (or Cox Model) with a Combination of Lasso and Group

Type Package

Lasso Regularization

Version 1.3
Date 2019-9-22
Author Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani
Maintainer Noah Simon <nrsimon@uw.edu></nrsimon@uw.edu>
Description Fit a regularized generalized linear model via penalized maximum likelihood. The model is fit for a path of values of the penalty parameter. Fits linear, logistic and Cox models.
License GPL
LazyLoad yes
NeedsCompilation yes
Date/Publication 2019-09-27 19:40:02 UTC
Repository https://nrs02004.r-universe.dev
RemoteUrl https://github.com/cran/SGL
RemoteRef HEAD
RemoteSha 3f51a8d0b6a2aaf928f8793bff3028b1cb3977b2
Contents
SGL-package
cvSGL 2 plot.cv.SGL 4
predictSGL
print.SGL
SGL
Index 10

cvSGL

SGL-package Fit a GLM (or Cox Model) with a Combination of Lasso and Group Lasso Regularization

Description

Fit a regularized generalized linear model via penalized maximum likelihood. The model is fit for a path of values of the penalty parameter. Fits linear, logistic and Cox models.

Details

Package: SGL
Type: Package
Version: 1.0
Date: 2012-3-12
License: GPL
LazyLoad: yes

Only 4 functions: SGL cvSGL predictSGL plot.cvSGL

Author(s)

Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani

Maintainer: Noah Simon <nrsimon@uw.edu>

References

Simon, N., Friedman, J., Hastie T., and Tibshirani, R. (2011) *A Sparse-Group Lasso*, http://faculty.washington.edu/nrsimon/SGLpaper.pdf

cvSGL Fit and Cross-Validate a GLM with a Combination of Lasso and Group Lasso Regularization

Description

Fits and cross-validates a regularized generalized linear model via penalized maximum likelihood. The model is fit for a path of values of the penalty parameter, and a parameter value is chosen by cross-validation. Fits linear, logistic and Cox models.

cvSGL 3

Usage

```
cvSGL(data, index = rep(1, ncol(data$x)), type = "linear", maxit = 1000, thresh = 0.001,
min.frac = 0.05, nlam = 20, gamma = 0.8, nfold = 10, standardize = TRUE,
verbose = FALSE, step = 1, reset = 10, alpha = 0.95, lambdas = NULL,
foldid = NULL)
```

Arguments

data	For type="linear" should be a list with \$x\$ an input matrix of dimension n-obs by p-vars, and \$y\$ a length \$n\$ response vector. For type="logit" should be a list with \$x\$, an input matrix, as before, and \$y\$ a length \$n\$ binary response vector. For type="cox" should be a list with x as before, time, an n-vector corresponding to failure/censor times, and status, an n-vector indicating failure (1) or censoring (0).
index	A p-vector indicating group membership of each covariate
type	model type: one of ("linear", "logit", "cox")
maxit	Maximum number of iterations to convergence
thresh	Convergence threshold for change in beta
min.frac	The minimum value of the penalty parameter, as a fraction of the maximum value
nlam	Number of lambda to use in the regularization path
gamma	Fitting parameter used for tuning backtracking (between 0 and 1)
nfold	Number of folds of the cross-validation loop
standardize	Logical flag for variable standardization (scaling) prior to fitting the model.
verbose	Logical flag for whether or not step number will be output
step	Fitting parameter used for inital backtracking step size (between 0 and 1)
reset	Fitting parameter used for taking advantage of local strong convexity in nesterov momentum (number of iterations before momentum term is reset)
alpha	The mixing parameter. $alpha = 1$ is the lasso penalty.
lambdas	A user inputted sequence of lambda values for fitting. We recommend leaving this NULL and letting SGL self-select values
foldid	An optional user-pecified vector indicating the cross-validation fold in which each observation should be included. Values in this vector should range from 1 to nfold. If left unspecified, SGL will randomly assign observations to folds

Details

The function runs SGL nfold+1 times; the initial run is to find the lambda sequence, subsequent runs are used to compute the cross-validated error rate and its standard deviation.

4 plot.cv.SGL

Value

An object with S3 class "cv. SGL"

11diff An n1am vector of cross validated negative log likelihoods (squared error loss in

the linear case, along the regularization path)

11SD An nlame vector of approximate standard deviations of 11diff 1ambdas The actual list of 1ambda values used in the regularization path.

type Response type (linear/logic/cox)

fit A model fit object created by a call to SGL on the entire dataset

foldid A vector indicating the cross-validation folds that each observation is assigned

to

prevals A matrix of prevalidated predictions for each observation, for each lambda-value

Author(s)

Noah Simon, Jerry Friedman, Trevor Hastie, and Rob Tibshirani

Maintainer: Noah Simon <nrsimon@uw.edu>

References

```
Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011) A Sparse-Group Lasso, http://faculty.washington.edu/nrsimon/SGLpaper.pdf
```

See Also

SGL

Examples

```
set.seed(1)
n = 50; p = 100; size.groups = 10
index <- ceiling(1:p / size.groups)
X = matrix(rnorm(n * p), ncol = p, nrow = n)
beta = (-2:2)
y = X[,1:5] %*% beta + 0.1*rnorm(n)
data = list(x = X, y = y)
cvFit = cvSGL(data, index, type = "linear")</pre>
```

plot.cv.SGL

plots the cross-validated error curve produced by cv.SGL

Description

Plots the cross-validated error curve, and confidence bounds for each lambda in our regularization path.

predictSGL 5

Usage

```
## S3 method for class 'cv.SGL'
plot(x, ...)
```

Arguments

```
x fitted "cv.SGL" object
... additional arguments to be passed to plot
```

Details

A cross validated deviance plot is produced. More regularized models are to the right (less regularized to the left)

Author(s)

```
Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani Maintainer: Noah Simon <nrsimon@uw.edu>
```

References

```
Simon, N., Friedman, J., Hastie T., and Tibshirani, R. (2011) A Sparse-Group Lasso, http://faculty.washington.edu/nrsimon/SGLpaper.pdf
```

See Also

```
SGL and cv. SGL.
```

Examples

```
n = 50; p = 100; size.groups = 10
index <- ceiling(1:p / size.groups)
X = matrix(rnorm(n * p), ncol = p, nrow = n)
beta = (-2:2)
y = X[,1:5] %*% beta + 0.1*rnorm(n)
data = list(x = X, y = y)
cvFit = cvSGL(data, index, type = "linear")
plot(cvFit)</pre>
```

predictSGL

Outputs Predicted Responses from an SGL Model for New Observations

Description

Outputs predicted response values for new user input observations at a specified lambda value

6 print.SGL

Usage

```
predictSGL(x, newX, lam)
```

Arguments

x fitted "SGL" object

newX covariate matrix for new observations whose responses we wish to predict

the index of the lambda value for the model with which we desire to predict

Details

Predicted outcomes are given

Author(s)

Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani Maintainer: Noah Simon <nrsimon@uw.edu>

References

```
Simon, N., Friedman, J., Hastie T., and Tibshirani, R. (2011) A Sparse-Group Lasso, http://faculty.washington.edu/nrsimon/SGLpaper.pdf
```

See Also

SGL and cvSGL.

Examples

```
n = 50; p = 100; size.groups = 10
index <- ceiling(1:p / size.groups)
X = matrix(rnorm(n * p), ncol = p, nrow = n)
beta = (-2:2)
y = X[,1:5] %*% beta + 0.1*rnorm(n)
data = list(x = X, y = y)
Fit = SGL(data, index, type = "linear")
X.new = matrix(rnorm(n * p), ncol = p, nrow = n)
predictSGL(Fit, X.new, 5)</pre>
```

print.SGL

prints a summary of the SGL solution path

Description

Prints a short summary of the SGL solution path.

print.SGL 7

Usage

```
## S3 method for class 'SGL'
print(x, digits, ...)
```

Arguments

```
x fitted "SGL" object
digits significant digits in printout
... additional print arguments
```

Details

The time of regression run, followed by a 2-column matrix with rows lambdas and num.nonzero. lambdas gives the lambda-value of each fit. num.nonzero gives the number of non-zero coefficients.

Author(s)

```
Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani Maintainer: Noah Simon <nrsimon@uw.edu>
```

References

```
Simon, N., Friedman, J., Hastie T., and Tibshirani, R. (2011) A Sparse-Group Lasso, http://faculty.washington.edu/nrsimon/SGLpaper.pdf
```

See Also

```
SGL and cv. SGL.
```

Examples

```
n = 50; p = 100; size.groups = 10
index <- ceiling(1:p / size.groups)
X = matrix(rnorm(n * p), ncol = p, nrow = n)
beta = (-2:2)
y = X[,1:5] %*% beta + 0.1*rnorm(n)
data = list(x = X, y = y)
fit = SGL(data, index, type = "linear")
print(fit)</pre>
```

8 SGL

SGL	Fit a GLM with a Combination of Lasso and Group Lasso Regularization

Description

Fit a regularized generalized linear model via penalized maximum likelihood. The model is fit for a path of values of the penalty parameter. Fits linear, logistic and Cox models.

Usage

```
SGL(data, index, type = "linear", maxit = 1000, thresh = 0.001, min.frac = 0.1, nlam = 20, gamma = 0.8, standardize = TRUE, verbose = FALSE, step = 1, reset = 10, alpha = 0.95, lambdas = NULL)
```

Arguments

data	For type="linear" should be a list with \$x\$ an input matrix of dimension n-obs by p-vars, and \$y\$ a length \$n\$ response vector. For type="logit" should be a list with \$x\$, an input matrix, as before, and \$y\$ a length \$n\$ binary response vector. For type="cox" should be a list with x as before, time, an n-vector corresponding to failure/censor times, and status, an n-vector indicating failure (1) or censoring (0).
index	A p-vector indicating group membership of each covariate
type	model type: one of ("linear", "logit", "cox")
maxit	Maximum number of iterations to convergence
thresh	Convergence threshold for change in beta
min.frac	The minimum value of the penalty parameter, as a fraction of the maximum value
nlam	Number of lambda to use in the regularization path
gamma	Fitting parameter used for tuning backtracking (between 0 and 1)
standardize	Logical flag for variable standardization prior to fitting the model.
verbose	Logical flag for whether or not step number will be output
step	Fitting parameter used for inital backtracking step size (between 0 and 1)
reset	Fitting parameter used for taking advantage of local strong convexity in nesterov momentum (number of iterations before momentum term is reset)
alpha	The mixing parameter. $alpha = 1$ is the lasso penalty. $alpha = 0$ is the group lasso penalty.
lambdas	A user specified sequence of lambda values for fitting. We recommend leaving this NULL and letting SGL self-select values

Details

The sequence of models along the regularization path is fit by accelerated generalized gradient descent.

SGL 9

Value

An object with S3 class "SGL"

beta A p by nlam matrix, giving the penalized MLEs for the nlam different models,

where the index corresponds to the penalty parameter lambda

lambdas The actual sequence of lambda values used (penalty parameter)

type Response type (linear/logic/cox)

intercept For some model types, an intercept is fit

X.transform A list used in predict which gives the empirical mean and variance of the x

matrix used to build the model

lambdas A user specified sequence of lambda values for fitting. We recommend leaving

this NULL and letting SGL self-select values

Author(s)

Noah Simon, Jerry Friedman, Trevor Hastie, and Rob Tibshirani

Maintainer: Noah Simon <nrsimon@uw.edu>

References

```
Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011) A Sparse-Group Lasso, http://faculty.washington.edu/nrsimon/SGLpaper.pdf
```

See Also

cv.SGL

Examples

```
n = 50; p = 100; size.groups = 10
index <- ceiling(1:p / size.groups)
X = matrix(rnorm(n * p), ncol = p, nrow = n)
beta = (-2:2)
y = X[,1:5] %*% beta + 0.1*rnorm(n)
data = list(x = X, y = y)
fit = SGL(data, index, type = "linear")</pre>
```

Index

```
* \ models \\
    plot.cv.SGL, 4
    predictSGL, 5
    print.SGL, 6
* model
    cvSGL, 2
    SGL, 8
*\ regression
    cvSGL, 2
    plot.cv.SGL, 4
    predictSGL, 5
    print.SGL, 6
    SGL, 8
cvSGL, \frac{2}{}
plot.cv.SGL,4
predictSGL, 5
print.SGL,6
SGL, 8
SGL-package, 2
```